
J .  Fluid Mech. (1972), vol. 51,  part 1, pp.  137-157 

Printed in Great Britain 
137 
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Asymptotic and numerical solutions of the unsteady boundary-layer equations 
are obtained for a main stream velocity given by equation (1.1). Far downstream 
the flow develops into a double boundary layer. The inside layer is a Stokes 
shear-wave motion, which oscillates with zero mean flow, while the outer layer 
is a modified Blasius motion, which convects the mean flow downstream. The 
numerical results indicate that most flow quantities approach their asymptotic 
values far downstream through damped oscillations. This behaviour is attributed 
to exponentially small oscillatory eigenfunctions, which account for different 
initial conditions upstream. 

1. Introduction 
The study of boundary-layer motions with smalI periodic fluctuations in the 

magnitude of the main stream velocity about a steady mean was initiated by 
Lighthill (1954). He considered the motion past a semi-infinite flat plate with a 
main stream velocity 

U = U,(l+eexp{iwt}) with I E ~  < 1, (1.1) 

and obtained solutions valid close to and far from the leading edge that were 
connected using the K$rm&n-Pohlhausen method. Later work by Rott & 
Rosenzweig (1960) and Lam & Rott (1960) extended Lighthill's study and in- 
vestigated the joining of the two solutions by analytical and series methods. 

The most interesting feature of this flow develops far downstream, where a 
double boundary layer may be found. The inside layer is a Stokes shear-wave 
flow, to first order, and is oscillating with zero mean flow, while a modified Blasius 
motion exists outside and convects the mean flow downstream. The skin friction 
anticipates the maxima of the free-stream velocity and its phase is advanced 
by 45' far downstream. 

This paper has two purposes: (i) asymptotic solutions of the boundary-layer 
equations with the external flow (1.1) are obtained for B -+ 0 using the method of 
matched asymptotic expansions, and (ii) the linear partial differential equation for 
the perturbation to the steady Blasius flow is solved numerically by a finite- 
difference method. The work by Lam & Rott (1960) anticipated the use of 
matched expansions and has many points in common with the work presented 
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here. However, this is the first systematic presentation that exhibits clearly 
the asymptotic structure of the solution. 

In  $2 the problem is formulated mathematically, and it is shown that the 
appropriate dimensionless streamwise variable is 6 = wx/Uo, x being the distance 
from the leading edge. This implies an equivalence of small x with small w and 
large x with large w .  Asymptotic solutions for 5 -+ 0 and [ + 00 are obtained in 
$ 3, and the limit 6 -+ co is found to be non-uniform in y, thus requiring a double 
layer. Composite solutions are derived for [+ co, and it is observed that no free- 
dom (in the choice of constants) exists to account for different initial conditions 
upstream. This is a result of using only the asymptotic sequence {6-in},n = 0,1 ,  
2, . . . for 6 -+ co, and a more complete expansion, including exponentially small 
oscillatory eigensolutions, is proposed in 5 4. The exponentially small eigenfunc- 
tions occur in both layers and are matched in the usual way. 

A numerical solution of the partial differential equations describing the first- 
order perturbation (in E )  to the Blasius flow is obtained in $5. A second-order 
finite-difference method (introduced by Keller & Cebeci 1971), which allows for a 
variable mesh size across the boundary layer, was used; this technique is especi- 
ally suited to resolving the double boundary-layer structure. 

The numerical results are discussed in $6. A surprising observation is the way in 
which some quantities approach their asymptotic values far downstream. This 
does not occur monotonically from below or above, as might be expected, but 
through damped oscillations about the asymptotic solution. These oscillations 
are attributed to the exponentially small eigenfunctions and this hypothesis is 
supported by some numerical results. 

2. Mathematical formulation and similarity 
Introduce a co-ordinate system with the plate lying along the 5 axis and the 
axis perpendicular to it and directed into the fluid (see figure 1). Dimensional 

variables, denoted by bars, are non-dimensionalized as follows : 

t = wf, x = wx/uo, Y = (w/v)&D, @ ( X , Y , t )  = (w/vaf)+F(.,D,i),} (2.1) 

u = quo = @y, 2, = (wv)-i  v = - @ X' 
Here w is the frequency of the perturbation to the free stream, which has mean 
velocity U,, v is the kinematic viscosity, @ is the stream function, (u, v) are the 
velocity components in the (x, y) directions, and alphabetic subscripts denote 
partial differentiation, It is assumed that the boundary-layer equations are 
valid for all x > 0, although it is known that they fail in a small neighbourhood of 
the leading edge, where the Navier-Stokes equations must be used. In  terms of 
the stream function, the x-momentum equation can be written 

@ut + @u @UX - @z @yy = u, + @yyy, 

U(t)  = 1 + E exp {it}, 

(2.2) 

where U(t) ,  the non-dimensional x component of velocity just outside the bound- 
ary layer, is given by 

and e is a dimensionless parameter (see (1.1)). 

(2.3) 
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The no-slip requirement at  the plate and the asymptotic condition at  the edge 
of the boundary layer will be satisfied if 

$Jx, 0, t )  = 0 = $(x, 0, t )  for x > 0,  (2.4) 

and $@, y ,  t )  -+ U ( t )  for y --f 03. (2.5) 

$JO,Y,t) = H(Y, t )  for Y, t  > 0. (2.6) 

An initial condition at  the leading edge requires 

\Inner layer for s+xI 

Stokes shear-wave motion 
FIGURE 1. Flow geometry. 

In  this paper, H will be independent of y and correspond to the velocity in the 
main stream. Finally, a periodicity condition requires 

P(x, Y, t )  = w, Y ,  t + T ) ,  (2.7) 

where P is any property of the flow field (e.g. velocity), and the non-dimensional 
period T = 27r. It is expected that the periodic solutions sought here may be 
obtained as limiting solutions (t -+ 00) of appropriate initial-value problems. 

2.1. Similarity 

From (2.2)-(2.6) it is clear that if a solution exists, it must have the functional 
form 

Note that 8 has not yet been assumed small; however, it cannot be so large as to 
invalidate the use of boundary-layer theory, e.g. back flow near the leading 
edge must not occur. Also, additional parameters may be introduced in (2.8) 
through the boundary and initial conditions. 

The form of this solution suggests an equivalence (or similarity) of small w 
with small x and large w with large x; this provides the motivation for seeking a 
quasi-steady solution (w -+ 0 )  when x is small and a Stokes shear-wave motion 
(w -+ co) far downstream. However, the limit x -+ m is not uniform in y ,  and a 
double boundary layer will be required.t 

t It should be observed that Link (1956) result for o -+ CO with 6 unrestricted also follows 
from this similarity. 

- 
$@, y, f) = ( U / W ) +  u, F[wZ/U,, (w/u)& y, 6; €1. (2.8) 
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2.2. Small parameter expansion 

We seek an asymptotic solution s -+ 0 which is valid for all ( x ,  y). When E = 0, 
the problem reduces to steady uniform flow past a semi-infinite flat plate and the 
solution, with uniform flow at the leading edge, has been given by Blasius. 
Although w appears in the non-dimensionalization (2.1) for this limiting case, it 
will not appear when the Blasius solution, 

I l / O ( X , Y )  = ( 2 x ) W r )  where 7 = Y / ( 2 4 4  (2.9) 

F" + FF" = 0, (2.10) 

subject to F(0)  = 0 = P'(O), (2.11) 

and F'(7)  + 1 for 7 -too.? (2.12) 

is written in dimensional form. Here P is a solution of 

Since this solution satisfies (2.2)-(2.6) when E = 0, it is taken to be a uniformly 
valid first approximation. 

To obtain higher order terms we require Is1 $ wv/U$ The parameter Uijwv 
plays the role of a conventional Reynolds number, and the inequality guarantees 
that the predominant perturbation to the Blasius flow is the free-stream fluctua- 
tion and not a higher order correction to boundary-layer theory. It is convenient 
to introduce new independent variables ( x ,  7, t )  so the boundary-layer thickness, 
in terms of 7, will be nearly constant; this is a consequence of the mean flow 
being convected by the Blasius motion while the perturbation does not produce 
any net flux far downstream. Since this transformation is not one-one at  x = 0, 
where any y > 0 is mapped onto 7 = co, (2.6) cannot be satisfied in a general way. 
However, this limitation is not very restrictive physically, since the point of 
attachment of the undisturbed stream is usually at  the leading edge. In  special 
cases, the original variables would be more appropriate. 

Transforming (2.2) to the variables (6 = x, 7 = y/(2x)&, t)$ and writing 

9(x7 Y, 4 = ( 2 0 ,  @(E,  7, t ) ,  (2.13) 

with u = 0, and w = (2&$ [70, - 2@DE- 01, (2.14) 
we obtain an equation for @, i.e. 

Q,,, + @@,, - 2E[QVt + @,, Q,,, - a,, 0, - si exp {it]] = 0. (2.15) 

In (2.15) we have used (2.3). Since the resulting equations for the perturbations 
will be linear, we assume, without loss of generality, 

@(& 7, t )  = F ( 7 )  + sexp {it} G(E,7). 8 (2.16) 

Substituting in (2.15), we find, after equating to zero the coeScient of s, 

G,,, + FG,, + F"G - ZE[iG, + F'G,,, - F"G5 - i] = 0. (2.17) 

t Primes denote differentiation with respect to 7 and pU(0) = 0.4696. 
$. This definition of E differs from that of Lam & Rott (1960) by a factor of i .  
0 There are steady perturbation solutions of (2.15) with the form 

4(59 7) = P(7) +eEk&(7), 
where Sk(7) are the eigensolutions discussed by Libby & Fox (1963) and k < 0. These are 
not finite a t  the leading edge, and are rejected. 
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The boundary conditions (2.4) and (2.5) require 

and 

(2.18) 

(2.19) 

The initial condition a t  the leading edge will be satisfied if G is a solution of (2.17) 
with 5 = 0, satisfying (2.18) and (2.19); this solution is 

G(0,q) = &(qF'+F), (2.20) 

and it can be identified as the quasi-steady solution given by Lighthill (1954) 
(see his equation (7)). 

An important question should now be asked: Will the solution of (2.17)-(2.20) 
be uniformly valid in space when E --f 02 As we shall see in the following sections, 
the answer seems to be in the affirmative (neglecting the leading edge), because 
the asymptotic coordinate expansions of (2.17) exhibit the structure expected 
from the similarity (2.8), and all boundary and initial conditions can be satisfied. 

3. Asymptotic solutions 
3.1. Expansion for s m l l  x 

A n  asymptotic expansion for [ -+ 0 has been obtained by Rott & Rosenzweig 
(1960) and Lam & Rott (1960). It has the form 

hz +FA: - 2nF'hk + (1  + 2n) P"h, = &(hk-l), (3.2) 

h,(O) = 0 = hk(0) for n 2 0, (3-3) 

and h;)(m) = 1, hk(m) = 0 for n 2 1. (3-4) 

subject to the conditions 

Here So = 0, Sl = hi - 1, and Zn+l = hk for n > 1. It should be noted that the 
homogeneous equation (3.2) subject to homogeneous boundary conditions has 
eigensolutions only for n < 0, and these are physically inadmissible owing to the 
singularity at 6 = O.$ 

The function ho(q) is identical with (2.20) and 15 additional terms were com- 
puted numerically by Lam & Rott (1960, p. 15), who tabulated the values 
Xk(0)  (n = 0,1, .. ., 15). Values of T&) = G7&, 0) were computed and the result- 
ing curves are shown in figure 4 as the dashed lines. The results are in excellent 
agreement with the numerical solutions for < 1-5. 

t In the referenced papers, h,(r) is denoted by g,(T). 
8 It has been assumed that (2.17) is valid at z G 0; in fact, we can only require the bound- 

ary-layer solution to match with a solution of the Navier-Stokes equations, valid near z = 0. 
Thus, the singular eigensolutions should not be rejected so readily. However, they would 
not appear in any numerical solution of (2.17), since the skin friction G,, would not be inte- 
grable with respect to z. 
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3.2. Expansions for large x 

This expansion is obtained by introducing the new independent variable, 

a = 5-9, 

in place of fl. Equation (2.17) becomes 
(3.5) 

2i(G, - 1) - a2(G,,, +PG,, +F“G) + a3(F”G, - F’G,,) = 0, (3.6) 

subject to the same boundary conditions (2.18)-(2.19). 
We formally let a -+ 0 in (3.6), keeping 7 fixed, and obtain 

G;-l = 0,  

which has solution, Go(r )  = 7 + C,. 

(3.7) 

Clearly both boundary conditions (2.18) cannot be satisfied, and a slip velocity 
will occur at  7 = 0. This suggests a non-uniform limit which may be removed 
using an ‘inner expansion’. We assume Go represents the first term of an ‘outer 
expansion’ since it satisfies (2.19). 

The appearance of a double layer owing to the co-ordinate expansion a -+ 0 
is not unusual and is common in problems of boundary-layer separation (see 
Goldstein 1930; Ackerberg 1970). To put these situations in the framework 
of matched asymptotic expansions with a small parameter, an artificial para- 
meter can be introduced or the co-ordinate undergoing the limit process may be 
considered a small or large parameter. 

3.3. Outer expansion 

The appearance of algebraic powers of a in (3.6) suggests an expansion of the form 

G(a, 7) N C ans,(~) for a -+ 0, 7 = O(1). (3.8) 

8’ 0 -  - 1, Gf 1 -  - 0 ,  is; = +F“S0, (3.9) 

n = O  

Substituting in (3.6), we find equations for the 8,’s: 

iak+3 = g ( s , ” + l + F s ~ + l ) + ~ ( n +  l ) P ’ ~ ~ + , - ( ~ n ) F ’ ’ s n + l  for n 2 0,  (3.10) 

which are subject to the outer boundary conditions 

sA-+ 1 and ak+O (n > 0 )  for r-+co. (3.11) 

The solutions are 

8, = 7+Co, 8, = Cl, 8, = (2i)-l(7F’-F+C0F’), (3.12) 

8, = c,, 8, = c,, 0, = c,, (3.13) 

and, using mathematical induction, 

= (2 i ) - l (2  - n) C,-l F’ + C,,, for n 2 5. (3.14) 

The unknown constants C, will be determined by the matching procedure to 
be discussed later. 
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3.4. Inner expansion 

Introduce the independent and dependent variables 

a = c-4 0- = ( 2 E h  = Y, g(a, 4 = (2c)Wc,q) .  (3.15) 

Transforming (2.17), we find 

4g,,+ 28aFgu,- 4ig,- 2a2F'(~g,,-~g,,) + 2*a3F"(ag,- as,) + 4i = 0. (3.16) 

In  these coordinates, the velocity components may be written 

u = P'+sexp{it}g, and w = 2-*a(qF'-P)+2-1sexp{it}a3g,. (3.17) 

The outer solution was obtained as the limit a -+ 0 with q fixed, but here we let 
a -+ 0 with a fixed. Therefore, the coefficients in (3.16), which are functions of 
q( = 2 - b ) ,  should be expanded for q .+ 0 and rewritten in terms of (a, a). 
Noting 

F(3)  = Cq2+ O(q5) with C = 0-2348.. . , 
(3.16) can be written 

4g,,, + 2*c~h3g,, - 4ig, + 2 8 c [ ~ a ~ ( ~ g , ,  - gg,,) 

+a3(~g,-ag,)]+4i+O(~6) = 0. (3.18) 

The no-slip condition will be satisfied if 

g(a, 0)  = 0 = 9&, 0). (3.19) 

Assume g(a, a) N angn(a) for a + 0, a = O(l) ,  (3.20) 

and substitute (3.20) in (3.18). We find the following differential equations for 
the gn's: 

g;-ig;+i = 0, (3.21) 

4; - ig; = 0, (3.22) 

s';-ig; = 0, (3.23) 

d; - ig; - 2-t C(a2g," - Bag;) = 0,  (3.24) 

gr-ig; = 0, (3.25) 

(3.26) 

Here primes denote differentiation with respect to a. The solutions, subject to 
(3.19),are 

go(a) = a + s-1 (exp { - sa} - l ) ,  (3.27) 

g1(4  = 0 = g2(4, (3.28) 

n=O 

. !  g: -2g5 = 0. 

g3(a) = 2-*C{Y( 1 - exp { - sa}) - ia2 + exp { - sa} [(6s)-l a3 

- (5ia2/4) - (13sa/4)]}, (3.29) 

= 0 = (3.30) 

where s = Ji, and go is the Stokes shear-wave solution for an infinite flat plate in 
an oscillating free stream with zero mean flow. 
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3.5. Matching 

Although each term in the inner expansion is completely determined, unknown 
constants are introduced in the outer expansion at  each order. They are deter- 
mined by the following matching principle: 

lim Gi(a, a) = lim GO(a, q).? (3.31) 
u+m 7-0 

Carrying out the limit on the left using (3.15), (3.20) and (3.27)-(3.30),neglecting 
exponentially small terms, we obtain 

(3.32 a )  
(3.32 b )  

In  (3.32b), we have written the result in terms of (a,q). The terms of O(a7) in 
(3.32a), when written in terms of ( a , ~ )  will not contribute to any of the terms 
already appearing in (3.32 b) ,  although additional terms of the form a7, a2q5, 

a6q, etc. might arise. 
We now expand the outer solution given by (3.8), (3.12)-(3.14) for q + 0 to 

obtain 
@(a, 7) N q + C, + EC, + (a2/2 i )  [Cq2 + 2CC07 + O(q4)] + a3C3 + a4C4 + a5C5 

Gi(a, a )  - 2-* a{a - 8-1 + 2-*Ca3(y - ia2) + O(a6)} 

- a(2-4s-1) - a y g i ~ 7 2 )  + (+g) ca4 + o(a77). 

+ a6[3icc4q + c6 + 0(q4)] + O(a7). (3.33) 

For each term in (3.328) there should be a corresponding term in (3.33). This can 
be achieved by choosing the unknown constants in the following way: 

We observe that the non-zero term of O(a6q) in (3.33) would arise from a term of 
O(a7) in ( 3 . 3 2 ~ ) ~  and there is  no inconsistency. 

c, = 0, c, = -2-5s-1, c3 = 0, c4 = EC7 c, = 0 = c,. (3.34) 

3.6. Summary and composite solutions for x +- co 
The inner and outer expansions may be written 

@(a, a) - 2-*a[go(a)+a3g3(v) +0(a6)] for a -+ 0,  a = O ( l ) ,  (3.35) 

+a6(39i/32) CF’+O(a7) for a -+ 0, q = O ( l ) ,  (3.36) 

Using (3.35) and (3.36) we may write a composite solution for the x component 

Go(a,7) - q - a ( 2 - k 1 ) + ( a 2 / 2 i )  ( ~ F ‘ - P ) + + $ E ~ C  

where g3(a) is given by  (3.29) and F ( y )  is the Blasius function. 

of velocity (see Cole 1968, p. 13),  i.e. 

u N 1 - exp{ - sa} + (a2/2i) qP”(7) + a s ( 2 - a ~ )  exp { - sa} [ (3 i /4)a  

- (3/4s)a2 - v3/6]  + O(a6) for a -+ 0. (3.37) 

(3.38) 

The skin friction and reduced volumetric flux are 

~ ( a )  = G,,(a, 0 )  N 2 k / a  -:id + O(a5), 

-8-1- (25;)-10lp- 2 4 ( 3  ca3- (%) iCd+O(a6) ,  (3.39) 
wherep = lim(yF’-F) = 1.21678. 

T+W 

t The superscripts i and o distinguish the ‘ inner’ and ‘ outer ’ expansions, respectively. 
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4. Eigenfunctions for x- co 

Therewould be no difficulty in continuing the asymptotic expansions for large x 
to higher orders. It is surprising that these expansions are completely determined 
and independent of the initial conditions upstream that are required to solve a 
parabolic partial differential equation such as (2.17). The difficulty is that the 
asymptotic expansions obtained so far are incomplete, for they contain only terms 
of the asymptotic sequence {a"}. In addition, there are a countable number of 
exponentially small eigensolutions, valid for x -+ 00, which can account for 
different initial conditions in x. A similar situation arises with the boundary- 
layer flow of a thin film along a vertical plate (see Ackerberg 1968, p. 1287). For 
that case, an asymptotic shear flow evolves far downstream and is independent 
of the streamwise co-ordinate; it can be shown that initial conditions decay 
exponentially fast via the eigenfunctions. It is usually assumed that when alge- 
braically and exponentially small terms occur together, the exponential parts 
may be neglected insofar as numerical results are concerned. Our study will 
show this to be false. 

The exponentially small eigenfunctions were first found by Lam & Rott 
(1960). The analysis presented here emphasizes the use of matched asymptotic 
expansions, and discusses the properties of these solutions. 

4.1. Inner solution 

The first-order term in the inner expansion, for x -+ 00 (see (3.20)) is independent 
of x, the time-like variable. To obtain information about the decay of initial 
conditions, we retain the largest a and a derivatives in (3.18) when a --f 0,  
and find 

4guu, - 4ig, + 2%'a4(agU, - 9,) = 0. (4.1) 

The particular solution of (3.18), corresponding to the forcing term 4i, is g = a, 
which is a member of the sequence {a"}; thus, if there are exponentially small 
eigensolutions they will satisfy homogeneous equations. 

Assume (4.1) has a solution of the form 

g(a, 4 = A @ )  &a). 

dA/da - (h2/k2a4) A = 0, (4.3) 

and d3Slda3- idS/da + h2(adS/da - S )  = 0. (4.4) 

A(a)  = D exp { - h2(3k2a3)-l}, (4.5) 

(4.2) 

After substituting in (4.1) and using separation of variables, we find 

Here k2 = 2-4C and A2 is the separation constant. The solution to (4.3) is 

where D is a constant of integration. The solution of (4.4) can be found by dif- 
ferentiating it once with respect to a, and then putting w(a) = d2X/daa, i.e. 

d2wlda2+(h2a--i)w = 0. (4.6) 
10 F L M  51 
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dwldr = 0 at a = 0, (4.7) 

and 

A matching condition, to be discussed later, will require that for a + co, S(a) 
must not grow faster than a linear function of r. This will be satisfied if 

To solve (4.6) subject to (4.7), introduce the new independent variable 

z = (i - A%) exp {i/I}/h+, (4.10) 

wnere /3 = 0, & 3n. Only one solution is obtained for the two values /3 = f $n, 
and to simplify the discussion later we will consider 1 = 0, - gn. Transforming 
(4.6) and (4.7), we find 

a z w p  - zw = 0, (4.11) 

with dwlaz = o at z = iexp{i/I}/h%. (4.12) 

We recognize (4.11) as Airy’s equation, which has two independent solutions, 
Ai ( z )  and Bi (2). The function Bi ( z )  is exponentially large for 1x1 +co for all values 
of argz except argz = Qn, n, when it is oscillatory and decaying algebraically. 
If Bi (2) is included in the solution for w(z), it  will not be possible to satisfy (4.9) 
when arg z + Qn, n. The latter cases may also be excluded from consideration by 
the matching, for it would require a G,, from the outer solution which is alge- 
braically large and oscillatory when q + O ,  and the governing linear partial 
differential equation would have to exhibit a singular point (or singular forcing 
term) at q = 0. This is not the case, and therefore we take 

w(z) cc Ai (2). 

We may satisfy (4.12) if 
(4.13) 

(d/dz) Ai ( z )  = 0 when z = i exp {i/3)/h+. (4.14) 

The zeros of the derivative of the Airy function lie along the negative real axis, 
say at  

zt =piexp{ni} (pi > 0, i = 1,2, ...a). (4.15) 

(Values of pi are given in Abramowitz & Stegun (1964, p. 478).) Hence the eigen- 
values hi must be chosen so that 

hi = pi2 exp {gi(P-  in)}. (4.16) 

The eigensolution is then found by determining the range of z corresponding to 
real values of [0, 00) from (4.10) with h = hi. Using these values, w(z)  and thus 
#(a) may be determined from (4.13), (4.10) and (4.8). 

It is known that Ai (2) tends to zero exponentially fast for Iz1 -+ co when 
arg z, E ( - Qn, in). Outside this range it is exponentially large except for 
arg z = n, f in, when it is oscillatory and decaying algebraically. The arguments 
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used for Bi(z) apply here as well, and we must take care that for a + 00, (4.10) 
yields a corresponding argz, E (-in, in). When /3 = 0, argz, = $ 7 ~  and for 
/3 = - $71, arg z, = - in. Thus, we choose /3 = - 871, and the eigensolutions 
satisfying (4.6)-( 4.9) may be uniquely determined. 

From (4.5) and (4.16), an expression may be found for the streamwise attenua- 
tion: it is 

(4.17) 

where b, = (3CpBa3)-l. Since p, -+ 
ofp,, the attenuation may be negligible for moderate and small values of a. 

for k -+ co, it  is clear that, for large values 

4.2. Outer solution and matching 

It was observed by Lam & Rott (1960) that a complementary solution of (2.17) 
is 

Gc(& 7) = 248 + GW-l [26PE+P(t)lP'(7), (4.18) 

where p(fl) is any differentiable function. We note that dC,/dq satisfies a homo- 
geneous outer boundary condition for 7 + co, and we may therefore consider it 
an eigensolution for the outer flow. 

The unknown functionp(5) can be determined by matching in the following 
way. We first express p in terms of a = @, expand (4.18) for 7 -+ 0, and write 
the result in terms of (a, a), i.e. 

w, 7) = ~ ( 0 1 )  + (a2m (P WY + 0 ( ~ 4 ) 1  

= p(a)  + ( 4 2 4  ( p  - spa) [ 2 @ ~  + o(c~404)]. (4.19) 

From the inner expansion (see (3.15) and (4.2)), we find, for a -+ co, 

Gi(~t, a) = 2-bg(a, a) = 2-4 aA(a) S(U)  - 2-*Da exp { - h2(3k2a3)-l} [S,  + aSk], (4.20) 
where 

S; = lom w(a) da, S,  = lim [~(a) -as;] = - aw(a)  du, 
u-+ w 10, 

and h is an eigenvalue. Comparing (4.19) and (4.20), we can match the term of 
O(a) by choosing 

upa - p  = - (iDSk/Ca2) exp { - h2(3k2a3)-1}. (4.21) 

A peculiar solution of (4.21) is 

p ( a )  = - (iDS& k2/Ch2) a exp { - h2(3k2a3)-1). (4.22) 

The complementary solutionp = a is a member of the sequence {a"> and should be 
discarded. Since a multiple of p(a)  is what appears as a multiplicative factor in 
(4.20), we may further match the term of O(a0) in (4.19) and (4.20) to obtain the 
relation, 

S,/Sk = - i p s .  (4.23) 

This equation can be verified by integrating (4.6) over the range [0, co) and noting 
w'(0) = 0;  thus the matching is self-consistent. We note that each eigenfunction 

10-2 
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will generate offspring owing to the neglected terms in deriving (4 .1)  from (3.18).  
The members of each family will match with the additional terms in (4.19). We 
shall find that the exponentially small eigensolutions are important for inter- 
preting the numerical results of $5. 

5. Numerical solution by finite-difference methods 
Since the solution of (2.17), for large x, involves a double layer, a numerical 

method is chosen which allows for variable mesh spacing in the y direction to 
achieve better resolution inside the boundary layer. Keller & Cebeci (1971) 
have proposed a second-order implicit technique with this feature, and it will be 
used here with a modification. 

To apply this method, we first write (2.17) as a first-order system with depen- 
dent variabIes G(& q), w(5, q ) ,  z( [ ,  q), i.e. 

Gv = W ,  (5.1)  

wv = 2 ,  (5 .2)  

(5 .3)  

El  = 0; Ej  = E j - l f k j - 1  (j = 2 , 3 ,  ...), (5.4) 

Z? = -F2-F"G+2t [F twg-  F"G{+i(w- l)]. 

We introduce the mesh points (&, qm) for 8 2 0,O < q < qm, and use the notation 

71 = 0,  qm=Vm-i+hm-i, m =  2 , 3  ,..., M and qM = roo. (5 .5)  

Here ki and hm are variable mesh widths. Centred differences are used through- 
out and we approximate (5 .1)  and (5.2) at the point (cj+l,qm+d) and (5.3) at the 
point &++, qm++). Only two &stations (j,j + 1)  have to be considered at once and 
the values at  the old station tj are denoted by a superbar; thus, for any dependent 
variable we use the abbreviated notation 

4 m  = +(tj+lj ~ r n )  and ?m = + ( t j ,  qm)-  

Writing the approximations to (5 .1) ,  (5.2) and (5 .3)  for m = 1 ,2 ,  ..., N -  1, we 
obtain 

Gm+l-Gm- (hm/2) (wrn+1+wm) = 0, (5.6) 

wrn+l-wm-(hm/') (zm+l+zm) = 0, (5.7) 

and Am(Gm+l -I- Grn) + Bm(Wrn+, + W m )  + QrnZm+, + Dm 2, - H m  = 0, (5.8) 

where 

and 

A ,  = (4 + 2gj++/kj) h,Fk++, Bm = - (2Fk++/kj + i) hmtj++, 

Cm = 1 + $hmFm++, Drn = - 1 + $h*nFm++ 

H m  = (l-$hmFm++)z,-(1+ghmFm+t)zm+l+ ( i -2Fk+&/kj)  

x hmtj++(gm+gm+l) - (4 -2tj++/hj) hmFk++(cm+1+ o m )  -4ihmgj+g, 

In  obtaining (5 .8 )  average values, with second-order accuracy, were used in 
(5.3),  e.g. 

z(Ej++, ~ r n + + )  = $(zm + zm+1+ zm + ?m+l), 

w~(&+J, Trn++) = (wrn+l -wm+l +wm-%m)/2kj. 
- and 
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The initial condition requires 

Gm = &(qmFL+Pm) for 6 = 0 = tl, m = 1,2, ..., M. (5.9) 

The boundary conditions will be satisfied if 

G, = 0 = w1 for [ 2 0, (5.10) 

and w, = 1 for 5 0.t (5.11) 

With a profile given at station 5, (5.6)-(5.8) and (5.10) and (5.11) are 3M linear 
algebraic equations in 3M unknowns. Following Keller & Cebeci, this system of 
equations could be written in a block-matrix form with a coefficient matrix which 
is tridiagonal. This form is useful for discussing the conditions under which 
solutions exist and a standard block-tridiagonal factorization procedure might 
be used to solve this system (see Isaacson & Keller 1966, p. 58). An alternative 
method is proposed here which is faster and more efficient. 

To use our method, we eliminate zm from (5.6)-(5.8) by the following steps. 
(i) Solve (5.7) for and use it to eliminate zm+l from (5.8). Denote the resulting 
equation by (A). (ii) Rewrite (5.7) and (5.8) by replacing m with m-1, and 
eliminate zm-l to obtain equation (B). (iii) Combine (A) and (B) to eliminate 2,. 
We thus obtain the equation 

AkGm+l + BL Gm + CL Gm-l + Dkwm+l + Ekwm + Kkwm-l - H L  = 0 
for m = 2,3 ,..., M - 1 ,  (5.12) 

where 

A:, = 2Am, BL = 2(Am+Am-1), CL = 2A,-,, 0; = 2(Bm+2Cm/hm), 
EL = 2(Bm + Bm-1+ 2Dm-Jhm-l- Zcm/hm), 

Kk = 2(B9,-1-2Dm-1/hm-1), Hk = 2(Hm+Hm-1)- 

The above equations have been simplified using the result Cm- Dm = 2. 
Considering (5.6), (5.10), (5.11) and (5.12), we now have 2M equations and un- 
knowns, and a solution may be found using the algorithm 

Wm+l =am+i+Pm+lwm+ym+lGrn ( m =  1,2 , . . . , J f - l ) ,  (5.13) 

combined with (5.6) written in the form 

Here, 
Gm+1= Gm+(#hm)(wm+,+wm) ( m =  1 , 2 , . . . , M - l ) .  (5.14) 

am = {am+1(ok+iih,A~)-Hk}3-l (m = 2,3, ..., M - I ) ,  (5.15) 

Pm = {Kk + (ihm-1) [A; + Bk +Ym+lf% + !&m4n)I)3i-1 

(m = 2,3, ..., M -  l),  (5.16) 

ym = { A ~ + B ~ + C m + y m + l ( ~ ~ + ~ h m A ~ ) ) ~ - l  
(m = 2,3 ,..., M - 1 ) ,  (5.17) 

and 
9 = -[(DL++hmAk) (Pm+1+Pm-lYm+l) +Ek+iihrnAk+(Bhm-l) 

x (AL+BL)] (m = 2,3, ..., M-1) .  (5.18) 

t This condition could be replaced with the requirement that a number of points at  the 
top of the profile must satisfy an asymptotic solution valid for large y. Here the boundary- 
layer thickness is essentially constant as a result of choosing q as independent variable, and 
(5.11) is satisfactory. 
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To start the procedure we use (5.11) and (5.13) for m = M - 1, and choose 
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& = O =  y&, and a M =  1. (5.19) 

We then solve (5.15)-(5.17) for the coefficients a,, p,, y,, while checking at  
each step that 9 + 0; this will guarantee a non-singular set of equati0ns.t 
With the coefficients known, wm+l and G,,, may be found from (5.13) and (5.14) 
by back substitution starting with the values (5.10). Finally, z1 is determined by 
eliminating z2 from (5.7) and (5.8) with m = 1, and thereafter using (5.7) with 
m = 1,2,  ..., M -  1 for z,(m > 1). 

A proof that this method solves the original system, when 9 ( m )  .t; 0 (m = 2, 
3, ..., M -  l ) ,  is easily obtained by mathematical induction and is given in the 
appendix. It should be noted that after Newton’s method is applied to the non- 
linear finite-difference equations obtained from the non-linear boundary-layer 
equation (2.2), it is necessary to solve a linear system of equations similar to 
(5.6)-(5.8) for each iteration and the same algorithm can be used. 

This system of equations was programmed, using double-precision complex 
arithmetic, for an IBM 360/50 computer. Two extensive runs were made, one 
with fixed k j  = 0-1 and h, = 0.04(0 < 7 < 1.6), 0-OS(l.6 < 7 < 3.6), 0.10 
(3.6 < 7 < 6.6), and the other using half these values. The profiles contained 96 
and 191 points respectively and the shorter run took about 6 min to reach x = 20. 
Richardson extrapolation was used to improve the accuracy from O(h2 + k2) to 
O(h44-P), where h. = maxh, and k E max ki. It was found that the cruder run 

almost always gave 3 significant figures of accuracy provided the magnitude of 
the computed numbers exceeded 0.01, the nominal accuracy. 

m i 

6. Discussion of results 
The real and imaginary parts of B,, which are the perturbations to the x 

component of velocity (see (2.14) and (2.16)), are shown in figures 2 and 3 for 
x = 0.0, 0.5, 1.5, 2.5, 4.0. The dashed curves in figure 3 correspond to the com- 
posite asymptotic solutions given by (3.37), and, for all practical purposes, the 
asymptotic results may be assumed to exist at this station, since the maximum 
pointwise difference in the velocity profiles is less than 3 %. Note that the ordi- 
nate in these figures is 7, and, when expressed in this way, the asymptotic profiles 
far downstream will not be independent of x. 

The real and imaginary parts of the skin friction, 7, = cl,,(x, 0) ,  are displayed 
in figure 4, along with the asymptotic results for small and large x; the remarkable 
accuracy of the asymptotic results should be observed. The magnitude and 
phase of the skin friction, along with the asymptotic results for large 2, are shown 
in figure 5 .  The phase has a local maximum at x !z 3-25, and the faint oscillations 
of the numerical curve, causing it to cross the asymptotic curve, are due to  the 
exponentially small oscillatory eigenfunctions. 

The magnitude and phase of the reduced volumetric flux, defined by (3.39), 
are shown in figure 6 with the asymptotic results for large x. Note that near x = 1.5 

t 9 may also vanish as a result of not allowing for pivoting during the inversion procedure. 
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FIGURE 2. Real and imaginary parts of G,(z, 7) = u, + iui vs. 7 at 
z = 0, 0.5, 1.5, 2-5. 

%, i 

FIGURE 3. A comparison of the real and imaginary parts of G,(z, 7) = u, + iu, from the 
numerical integration (- ) with the asymptotic solution (3.37) (----) at z = 4.0. 

the magnitude of the volumetric f lux has a local maximum; a glance at the real 
part of the velocity profile (see figure 2) shows it to be quite full compared to the 
others. Here the oscillations ofthe numerical results about the asymptotic curves 
are quite prominent, and this is the most surprising result of this study. We 
attribute this behaviour to the eigenfunctions discussed in 3 4, which oscillate 
with exponentially decreasing amplitude, and account for different initial con- 
ditions upstream. 
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X 

FIGURE 4. Real and imaginary parts of GVV (x, 0) = 7,+kri ~8.2. - , froin numerical 
integration; ----- , from asymptotic solution about the leading edge (3.1); - . - . - ---, 
from asymptotic solution for large x (3.38). 
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FIGURE 5. Magnitude and argument of Gqq(x, 0) 'us. x. ~ , from numerical integration; 
_ _ _ _ _ _  ,fromasymptotic solution for large ~ ( 3 . 3 8 ) ;  . ... . ...., fromdifferentinitial conditions 
at  3: = 1.0. 
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FIGURE 6. Magnitude and argument of the reduced mass flux R, vs. x (3.39). - , from 
numerical integration; ------, from asymptotic solution for large x (3.39). 
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FIGURE 7. Real andimaginary parts of lim[v-G(z,~)] = R(x)+iI(x) w. x(6.1). 

, from numerical integration; -- - -- - from asymptotic solution (3.39). 
7- 
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To provide evidence supporting this conclusion, consider the real and im- 

(6.1) 

which are shown in figure 7, along with the asymptotic results for large x. To 
study the oscillations in detail, we subtract the predicted asymptotic values for 
large x (3.39), and display the differences A R  + iAI in figure 8. It should be noted 
thatthe errorisO(x-S)owingtotheneglectedterms in (3.39).E'or largex, theresults 
may also be unreliable because the differences are smaller than the accuracy of 

aginary parts of 

R + iI = (2x)-& R - (1 - G J  dq = lim [r - G(x ,  ?)I, 
f -/om 7+a 

0.07 
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0.03 

0.02 
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0.01 
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-0.01 

-0.02 

2 

FIGURE 8. The difference, AR(z) + iAI(z), between the numerical and asymptotic values for 
z + co of  R(z)+iI(z) 'us. z. 0, data points used to fit a linear combination of  the second, 
third and fourth eigenfunctions to the numerical results; 0, predicted values from the 
linear combination of these eigenfunctions; A, predicted values from a linear combination 
which also includes the fifth eigenfunction. The extra data points used in this case were at 
x = 7.0 and 7.5. e, predictions of the curve AI.  

the numerical method. We will assume the results are meaningful for x E [3, lo]. 
Using an approximation containing the second, third, and fourth eigenfunctions, 
with two unknown constants per eigenfunction (which represent the magnitude 
and phase), we numerically fitted the approximation at the six x points denoted 
by squares in figure 8. The points specified by circles represent values predicted 
by this approximation, and the points denoted by triangles are the predictions of 
an approximation including the fifth eigenfunction. The additional points taken 
in the fit for the last case are the next two similarly spaced points at larger x 
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values. Although the agreement is convincing, we had hoped to predict the real 
part from the imaginary part (and vice versa), but this was unsuccessful. 

The link between the initial conditions and the exponentially small eigenfunc- 
tions was provided by the following numerical experiment, for which there is a, 
laboratory analogue that will be discussed below. The integration was started in 
the usual way, but, at z = 6 = 1.0, the real part of G? was increased by 1.0 for 
1.6 6 7 < 4.8 with all other quantities remaining fixed. Two additional steps 

= 1.0 (----I 

in x were taken, with step size Ax, and the resulting sets of data at x = 1 +Ax 
and 1 + 2Ax were averaged to yield a second-order-accurate solution at the point 
x = 1 +#Ax. The averaging eliminates spurious numerical oscillations which 
arise from an inconsistent profile atx = 1 .O . i  In  any case, since(2.17)is parabolic, 
the solution may be started at any x with an arbitrary profile,S and we choose the 
starting profile at x = 1 ++Ax, since it is consistent and quite smooth. 

The skin friction results from this integration are shown in figure 5 as the dotted 
curve; the excitation of the exponentially small oscillatory eigenfunctions is 

t By a consistent profile we mean that, if w = G,, is given along a line z = constant, G 
and z are determined on that line from (5.1) and (5.2). 

3 The point z =_ 0 is a singular point of (2.17) and to avoid singulm solutions (see the dis- 
cussion following (3.4)), an initial profile at z I 0 must satisfy (2.20). 
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apparent in both the magnitude and phase. This situation could be realized 
experimentally by injecting some of the free-stream fluid into the boundary layer 
over the range of 7 specified above; it would probably not be too difficult to verify 
the dramatic phase shifts predicted in the range 1 < x < 5. 

In  figure 9, we have displayed AI from the above computation as the dashed 
curve, with the curve A1 from figure 8 shown solid. The differences between the 
curves again indicate that the exponentially small eigenfunctions may be im- 
portant in determining the way in which the asymptotic state is approached. 

More extensive numerical calculations are under way when E is moderately 
large (of 0(0.5)), when the linearization procedure (2.16) would not be valid. 
In  these cases the non-linear boundary-layer equations must be solved, and 
extensive regions of backflow are expected. A comparison between numerical 
results obtained here from the linear theory and those obtained from the non- 
linear equations indicates the linear theory is quite accurate (with maximum 
error in the skin friction of 3 yo) for 6 < 0.1. 

This research was supported by the U.S. Army Research Office, Durham, 
under grant DA-ARO-D-31-124-71-G68. An abstract of the paper was presented 
at the International Union for Theoretical and Applied Mechanics Symposium 
on Unsteady Boundary Layers a t  Lava1 University, Quebec, Canada (May 1971). 

Appendix. Validity of the algorithm (5.13) 
To establish (5.13), it must be shown that the coefficients em,, p,, and ym 

can be determined recursively. Once they are known, w,, G,, and x, can be 
found by the method outlined below (5.19). 

Write (5.6) and (5.12) with m = N ,  and (5.6) with m = N -  1, i.e. 

G N + , - G N - ( Q h N ) ( w N + 1 + W , )  = 0 ( N =  1,2,  ..., M - l ) ,  

ALGN+l + BkGN -+ CLGN-l + D;V w ~ + ~  + Ek wN + Kk wNVl - H k  = o 
( N  = 2,3,  ..., M -  l) ,  

G N - G N - , - ( Q h , l ) ( W N f W N - l ) = O  ( N = 2 , 3  ,..., M). 

Mathematical induction will be used, and we note that the initial values (5.1 1)  and 
(5.19) satisfy (5.13) with m = M - 1 .  Assume (5.13) is true for m = M - 2 ,  
M - 3, ..., N ;  for induction it must be established for m = N -  1. For m = N ,  
(5.13) can be written 

Y N + ~ G N - w N + ~ + P N + ~ w N + ~ N + ~  = 0 ( N  = 1 , 2 , - - . , M - l ) .  

For a fixed N ( N  = 2,3, . . . , M - l ) ,  the above four equations contain 6 unknowns, 
G N + 1 ,  a,, G N - 1 ,  w N + l ,  wN,  W N - 1 ,  and it should be possible to solve for wN in 
terms of G N - 1 ,  and W N - 1 .  Solving for W ,  by Cramer’s rule, we find the resulting 
equation will be of the form (5.13) with rn = N -  1, provided the coefficients 
aRT, P N ,  y N  are related to aN+l, /3N+1, Y ~ + ~  by the recursion formulas (5.15)- 
(5.18); this establishes the result. 
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No difficulty will be encountered unless the denominator%(m), given by (5.18), 
vanishes for some m. In  that case, the system of equations may be singular, but it 
is more likely that a rearrangement of the equations or a different method of 
solution will avoid this difficulty. 
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